200 Ω Chopper R&D Progress

G. Saewert

Project X collaboration meeting

April 10, 2012

Outline

- Development approach and objectives
- Subsystem development progress
 - Vendor contributions
 - Status of driver development
- Summary

200 Ω approach pros and cons

Pros

- Lower power dissipation in the driver, kicker structure and load
- We have chosen for the driver to be DC coupled to avoid base line shifting of AC coupling

Cons

– Neither a driver, nor 200 Ω transmission lines, feed-throughs, or load are commercially available

Design requirements

- Present design effort targets these objectives
 - Potential to reach 500 V
 - Switch either of two chopping schemes
 - Two 500 volt kickers to kick beam out
 - Or, two +/- 250 volt kicker to kick beam both in and out
 - DC coupled drive to the kicker
 - ~2 ns rise time
 - Be able to kick out one bunch (~1.5 ns wide flat top)
 - Handle power dissipation for high duty factor
 - Support variable high duty factor waveforms
 - Handle rep rates, ~30 MHz

System block diagram as currently proposed

Two helical kickers: their interconnections and biasing

200 Ω termination prototype designed by Elab, Inc.

200 Ω transmission lines

- Transmission line options
 - Home made coax
 - Home made microstrip line
 - Dual 100 Ω coax
- Dual 100 Ω coax under evaluation

- Measurement shows 0 1.75 ns rises from 125 Ω to ~200 Ω
- Use may require additional compensation
- 100 Ω coax supplied by Haverhill Cable

Custom feedthru by MPF Products, Inc.

Low capacitance isolated feedthru

Driver: GaN FET switching power

- GaN FET power dissipation test
 - Switched at 30 MHz CW
 - Duty factor = 50 % (62 W delivered)
 - Case temp = 86 °C
 - Duty factor = 25% (31 W delivered)
 - Case temp = 81 °C
- Test performed without a heat sink
 - FET soldered to G-10 PCB
 - No forced air flow over the transistor

Gx241 specs: Coss = 8.5 pFBvdss = >200V

- Conclusions
 - Switching losses dominate over conduction losses at 30 MHz
 - Obtaining adequate cooling should be possible

GaN FET switching speed

Cascode switch design

Motivation for multi-FET circuit

- Currently available devices limited to 200 V
- However, switching losses at 100 V per FET are more manageable
- The appeal of cascode scheme for multi-FET switch
 - FETs turn on together and share voltage
 - There is only one control signal
 - Has the potential of switching fast
- Major components
 - 1 common source driver stage (Q1)
 - 4 common gate stages in cascode (Q2-Q5)
 - RC divider string forces voltage sharing
 - Voltage clamps protect Q2-Q5 gates

5 FET Cascode switch

Cascode switch design issues

- Major issues
 - Design common source driver stage having <1 ns rise/fall time
 - Provide adequate gate drive voltage in the common gate stages
 - During edges while turn on
 - Gate drive level decreases on upper FETs
 - Minimize output overshoot and ring
- Minimize and counteract parasitic capacitance and inductance
 - Increase FET switching losses
 - Responsible for output overshoot and ring
 - Impair output rise time

Switching to 480 V

Two helixes 16mm appart

Coupling effect

Driver = 2 ns rise/fall

Both helixes are resistively matched to 50 Ω

Both helixes wound in the same direction

Helixes driven out of phase

Driver = 2 ns rise/fall

Both helixes are resistively matched to 50 Ω

Both helixes wound in the same direction

Summary

- All subsystems have are under development to some degree
 - Mechanical Support Dept. is working on kicker design
 - 200 Ω transmission lines are under evaluation.
 - One feed thru vendor has submitted one proposal
 - We are to receive 200 Ω termination prototype in April
- Driver design is approaching 500 V